If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7v^2+2=492
We move all terms to the left:
7v^2+2-(492)=0
We add all the numbers together, and all the variables
7v^2-490=0
a = 7; b = 0; c = -490;
Δ = b2-4ac
Δ = 02-4·7·(-490)
Δ = 13720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13720}=\sqrt{196*70}=\sqrt{196}*\sqrt{70}=14\sqrt{70}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{70}}{2*7}=\frac{0-14\sqrt{70}}{14} =-\frac{14\sqrt{70}}{14} =-\sqrt{70} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{70}}{2*7}=\frac{0+14\sqrt{70}}{14} =\frac{14\sqrt{70}}{14} =\sqrt{70} $
| 5(x-3)-15=2x | | 2(y-2)(y-2)-(y-5)(y+3)=(y-1)(y-1)+2 | | 91=7(5+n) | | 6x+6x-3=3(4x+1) | | 10v=8v+10 | | 18.52=3g+3.91 | | 1-10r=-7-2r-9r | | 14=10-x | | x=5x+(2x+40) | | -3(2x-5)=1/2(-12x+20) | | 52x^2-55x-63=0 | | 3-2x=5x-(7x-3) | | 8k^2+3k=1 | | w/5=-11 | | z/3-2=10 | | 6a+15a=21a | | -1-7(-3x+1)=10x-30 | | -4n-8n=-6n-n | | 135=50+(10+8)w | | 16-3r=1-8r | | 9(1+b)=72 | | 7x+10=7x-2 | | 1=8+x/25 | | -3(5p-7)-3p=111 | | 8-5r=-3r-4+4r+12 | | q=0 | | 3y+5+7y-25=180 | | -1-79-3x=10=10x-30 | | h/27=2 | | 7m+30=-2 | | 2(x-1)=7x+3-5x | | 15y=112 |